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Overview

• Acceptance sampling/Sampling plans
• Motivation
• Components of a probabilistic requirement
• Current NASA best practice (ASA)
• A potentially more efficient practice (ASV)
• Research plan, summary results, literature review
• Operating characteristic
• Derivation of variables sampling plans
• ASV sampling plan calculators
• Empirical testing and results 
• Tests of the fundamental assumption (near normal, near 

exponential skew, and modest skew) 
• Procedure for selecting a sampling plan (flow diagram
• Summary/Contributions
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Acceptance sampling

• One of the oldest problems in quality engineering is to 
assess the acceptability of items that a customer 
receives from a producer.  

• Acceptance sampling is an alternative to 100% 
inspection applied when inspection is destructive, or 
when the time and/or cost of 100% inspection are 
unwarranted or prohibitive. 

• Based on inspection of the sample, the customer 
decides whether to accept or reject the entire lot, or to 
continue sampling. 

• There are standards (MIL, ANSI, and ISO) pertaining to 
acceptance sampling.
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Sampling plans

• A sampling plan is the pair (n,c) or (n,k) , where n is 
the minimum sample size, i.e., the minimum number 
of observations required to verify statistically the 
requirement. 

• For discrete random variables, the constant c is the 
maximum number of nonconforming observations 
supporting the determination that a lot is acceptable.

• For continuous random variables, constant multiplier 
k is the minimum distance (in standard deviations) 
between the sample mean and the required limit 
supporting the determination that a lot is acceptable.
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Motivation
Our interest in acceptance sampling arose in an 
analogous sampling experiment--the need to verify 
level-two design requirements for Cx “by analysis” 
using Monte Carlo simulation.  
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[CA0049-PO] The CaLV [Cargo Launch Vehicle] shall launch LSAM 
[Lunar Surface Access Module] from the launch site to the Earth 
Rendezvous Orbit (ERO) for Lunar Sortie Crew and Lunar Outpost 
Crew missions 

The delivery of the LSAM from the launch site to the ERO shall be 
verified by analysis. The analysis shall be performed using NASA-
accredited digital flight simulations.  The analysis shall include 
Monte Carlo dispersions on mass properties, engine performance, 
GN&C parameters and environmental parameters. The verification 
shall be considered successful when the analysis results show that 
there is a [] probability with a [100(1-)%] confidence that the 
LSAM reaches ERO. 



Components of a probabilistic 
design requirement

• Condition (I)
conformance indicator (typically 
a limit on the value of an output 
variable)

• Reliability ()
minimum probability of 
achieving the condition

• Consumer's risk ()
maximum probability of 
accepting a nonconforming 
design

• Producer's risk ()
maximum probability of 
rejecting a conforming design

Consider the (true but unknown) parent 
distribution of an output variable X.

We can see that this output meets the 
condition X<1463 with reliability =0.997.

If we knew the parent distribution a 
priori, there would be no sampling error 
and the risks would be ==0.

Pass Fail
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Current NASA best practice for requirements 
verification using Monte Carlo

The current best practice employs attributes acceptance sampling (ASA).  For the required 
reliability and consumer’s risk, the sampling plan specifies number of trials (n) and the 
maximum number of failures permitted (c) to substantiate the validity of the design.

Advantage: Plans are exact and can be determined a priori. (Nonparametric--by definition, 
the distribution of the count is Binomial(n,p), where p is the true reliability.)  

Disadvantage: Plans require large samples for high confidence in highly reliable designs 
(the pass/fail count ignores “by how much” ).

Sample the parent distribution 
using Monte Carlo simulation

Sample Count

Count the number of simulation trials 
in which the output fails the condition

Fail

Pass
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A more economical 
approach to verification

The current project seeks a best practice employing variables acceptance sampling (ASV).  
For the required reliability and consumer’s risk, the sampling plan specifies number of 
trials (n) and the minimum multiplier (k) to substantiate the validity of the design.

Advantage: ASV plans typically require fewer trials than ASA plans (but not always).

Disadvantages: Software for plan generation is unavailable; procedures/assumptions 
reported in the academic literature appear to be largely untested. 

Sample

)(nX

)(~ nk X
maxX

Pass Fail
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Research plan and summary results
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Software search Off-the-shelf plan calculators (commercial or otherwise) were 
found only for normal variates.

Literature search Plans for 5 additional variates were found in the academic 
literature (Exponential, Gamma, Weibull, Inverse Gaussian, 
Poisson, Burr).

Implementation Calculators were implemented in Excel for Binomial, Normal, 
Exponential, Gamma, Weibull, Inverse Gaussian, and Poisson.  
(Burr not attempted. )  Verified against published examples.  Plans 
typically, but not invariably, smaller than corresponding ASA 
plans.

Empirical Testing Monte Carlo simulation applied to test plans derived for typical 
(Constellation-like) OC from all seven calculators.  All were 
validated, except for Inverse Gaussian.  Error in the published IG 
derivation discovered.

Application issues Fundamental assumption that the distributional form can be 
determined uniquely from sample data tested using Monte Carlo.  
Assumption not substantiated for typical OC.  Conservative 
protocol developed for selecting plans to use in practice. 



Literature 
Variable Source Implemented Validated

Binomial Multiple sources  

Normal Multiple sources  

Gamma K. Takagi (1972) “On designing unknown-sigma sampling 
plans on a wide class of non-normal distributions,” 
Technometrics 14(3)669-678.

 

Weibull K. Takagi (1972) “On designing unknown-sigma sampling 
plans on a wide class of non-normal distributions,” 
Technometrics 14(3)669-678.

 

Exponential W. C. Guenther (1977), Sampling Inspection in Statistical 
Quality Control, Macmillan, New York.

 

Poisson W. C. Guenther (1977), Sampling Inspection in Statistical 
Quality Control, Macmillan, New York.

 

Inverse
Gaussian

M. S. Aminzadeh (1996), "Inverse-Gaussian Acceptance 
Sampling Plans by Variables," Communications is Statistics--
Theory and Methods 25(5)923-935.

 

Burr K. Takagi (1972) “On designing unknown-sigma sampling 
plans on a wide class of non-normal distributions,” 
Technometrics 14(3)669-678.

No No
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Operating Characteristic

Every sampling plan has an operating characteristic (OC) 
which defines the probability of accepting a population 
Pa(p) for every value of the failure probability p[0,1].   
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A sampling plan is derived by
defining two operating points, 
(p0,1-) and (p1,), where p0< p1

and  and  are small probabilities.  

OC curve.



Derivation of variables plans

• The underlying problem can be framed as an 
hypothesis test for which we intend to enforce 
both significance and power requirements.  

• The null and alternate hypotheses are

H0: p = p0 and H1: p = p1 > p0

• Under H0 we accept the population as conforming 
and under H1 we reject the population as 
nonconforming.  

• The inequalities

Pa(p0) > 1- and Pa(p1) < b

establish the significance and power of the test.
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F(x;0)

F(x;1)

01xmin

p1

p0

Derivation of variables plans

With the form of the 
distribution F(x; )
known, the null and 
alternate hypotheses 
are equivalent to

H0:  = 0

H1:  = 1 > 0

as shown for a required 
lower bound xmin.
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xmin A11



0

1-

A0

k1

k0

Derivation of variables plans

The power requirements 
are applied to the 
sampling distribution 

to determine the 
acceptance limit A, 
required sample size n,
and multiplier k.
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Dashboard for the Weibull Calculator

15



Empirical test results (example)
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Consider an upper limit of xmax=10,000 for a random variable X
distributed Weibull with unknown shift parameter  and estimated 
shape and scale parameters.  For the test OC (p0,)=(0.005,0.2), 
(p1,)=(0.001,0.1), the associated the null and alternative means 
are 0 =7841.64 and 1 =8121.07, respectively. The variables plan 
from the gamma calculator is (n,k)=(156, 2.17779). 
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Empirical test example results
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Sampling distribution of 
the mean estimated using 
100,000 Monte Carlo 
trials.

Scatter diagram for 
estimated  and .  
Line is the 
acceptance limit

A=-k

nonconforming

conforming



Empirical test summary results
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Variable n k   nv/na

Exponential() 2 2.43x10-3 0.200 0.082 0.003

Normal(,=100) 18 2.886 0.191 0.097 0.023

Normal(, ) 88 2.886 0.191 0.097 0.099

Gamma( 10,338 ,) 206 2.131 0.193 0.096 0.224

Weibull( 10,1995 ,) 91 3.623 0.189 0.079 0.117

IG( 1502, 100000,) 18 2.886 0.173 0.382 unusable

 and  estimated using 100K Monte Carlo trials for 
plans with (p0,)=(0.005,0.2), (p1,)=(0.001,0.1)

Results for xmin=1000 



Empirical test results

19

Variable n k   nv/na

Exponential() 66 6.26922 0.200 0.082 0.085

Gamma( 10,441 ,) 77 3.667 0.189 0.104 0.099

Weibull( 10,3800 ,) 156 3.623 0.188 0.081 0.201

Variable n c   nv/na

Binomial(n,p) 777 1 0.188 0.100 1

Poisson(n,p) 21 88 0.191 0.097 0.035

Results for xmax=10,000 

Results for discrete 



ASV fundamental assumption
The fundamental assumption of ASV is that the form of the 
output distribution is known a priori.  (Moreover, validity 
testing showed that ASV procedures are robust to error in 
the shift and scale parameters, but not to shape 
parameters. )
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• In general, the assumption is unsubstantiated and the form of 
the distribution must be determined by fitting sample data.

• The question naturally arises, “How many trials are required in 
order to fit the correct form of the parent distribution?”

• Specifically, “Can we obtain a unique fit to the correct parent 
distribution based on a sample which is approximately the 
same size as that specified in the corresponding ASV plan?”

• The literature appears to be essentially silent on this issue. 
For an exception, see C. Liu (1997) A Comparison Between the Weibull and 

Lognormal Models Used to Analyse Reliability Data, Ph.D. Dissertation,  University 
of Nottingham, UK



Test case 1—Near Normal

Three parent 
output 

distributions 
where chosen 

with similar 
shapes and 

identical 
means and 

standard 
deviations.  
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Fitting tests were performed for a requirement with 
condition: limit (upper or lower)
reliability: =0.9973 
consumer’s risk: =0.1

(This seems typical of what we had been seeing as Cx level 2 requirements.)



Test 1 procedure and results
• 30 samples of 100 trials each were drawn from the 

parent Normal distribution.
• Normal, Gamma, Weibull, and Exponential 

distributions were fit to sample using commercial 
software (@RISK).

• In general, good fits to the Normal data were 
achieved with a Normal  distribution.

• But good fits also were achieved with Weibull and 
often Gamma (but not Exponential).

• Fits were compared using three alternative 
goodness-of-fit (GOF) tests--the “best fit” was 
sensitive to the GOF test used.  (Note: Anderson-
Darling is the preferred test here because it  gives 
more weight to the tails.)

Conclusion: For our 
example, the size of the 
sampling plan is inadequate 
to distinguish the parent 
distribution for data sets 
with near-normal shape.

• The test procedure was repeated for samples of 300 
trials each, with no appreciable change in the nature 
of the results.

• The test procedure was repeated for samples of 100 
and 300 drawn from the Gamma and Weibull parent 
distributions, with no appreciable change in the 
nature of the results.



Useful result • The test results were not unexpected—these 
distributions are very similar in shape overall.  

• Our interest is in the (small) differences in the 
tails of these of these distributions.

• Note that the distribution with the smallest k
factor provides the greatest protection against 
accepting a nonconforming design (i.e., the 
largest lower limit and the smallest upper limit).

23

Parent Lower Upper

Normal 922 1478

Gamma 957 1513

Weibull 943 1463

Acceptance limits for 
=0.9973 for the three 
parent distributions.



Application

Variable n c k A

Binomial (ASA plan) 2959 4

Normal(1200, 0) 257 2.968 1497

Gamma(41.1, 15.5984, 558.906) 224 3.378 1538

Weibull(3.68187, 366.6, 869.25) 296 2.787 1479

Upper limit sampling plans (=0.2)
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Lower limit sampling plans (=0.2)

Variable n c k A

Binomial (ASA plan) 2959 4

Normal(1200, 0) 257 2.968 903

Gamma(41.1, 15.5984, 558.906) 353 2.566 943

Weibull(3.68187, 366.6, 869.25) 615 2.677 932

The plan with the 
tightest bound will 
yield the most 
conservative 
decision—one that 
guarantees the 
consumer’s risk is no 
greater than specified. 

For the example 
requirement, the 
Weibull plan provides 
the tightest (least) 
upper bound.

The Gamma plan 
provides the tightest 
(greatest) lower 
bound.

These  plans provide an order-of-magnitude reduction in computing effort.



Test case 2—Right skew

The second 
case considers 

Weibull and 
Gamma  

distributions 
with identical 

means and 
moderate 

skew.
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Fitting tests were performed for the same requirement 
condition: limit (upper or lower)
reliability: =0.9973 
consumer’s risk: =0.1



Test 2 procedure and results
• 30 samples of 300 trials each were 

drawn from the parent Weibull 
distribution.

• Normal, Gamma, Weibull, and 
Exponential distributions were fit to 
sample using commercial software.

• In general, good fits to the Weibull data 
were achieved with the Weibull 
distribution and sometimes the Gamma 
distribution.

• The skew is sufficiently large that the 
data are not mistaken as Normal.

• The skew is sufficiently small that the 
data are not mistaken as Exponential.

• The test procedure was repeated for a 
the parent Gamma distribution, with 
no appreciable change in the nature of 
the results.

Conclusion: For our example, the size of the sampling plan is inadequate to 
distinguish between Weibull and Gamma, but adequate to rule out Normal and 
Exponential parents.



Useful result 2
• As before, the test results were not unexpected 

and our interest is in the (small) differences in the 
tails of these of these distributions.

• As before, the distribution with the fattest tail in 
the direction of the limit provides the greatest 
protection against accepting a nonconforming 
design.

• However, with sufficient skew as in this example, 
we can rule out Normal as the parent (poor fit).

Parent Lower Upper

Normal 922 1478

Gamma 1023 1806

Weibull 1017 1531

Acceptance limits for 
=0.9973 for the three 
parent distributions.



Application

Variable n c k A

Binomial (ASA plan) 2959 4

Normal(1200, 0) 257 2.968 1497

Gamma(1.77,15.5984,1017.7) 278 4.915 1873

Weibull(2.04,220,1005.9) 264 3.557 1557

Upper limit sampling plans (=0.2)
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Lower limit sampling plans (=0.2)

Variable n c k A

Binomial (ASA plan) 2959 4

Normal(1200, 0) 257 2.968 903

Gamma(1.77.15.5984,1017.7) 25009 1.304 1018

Weibull(2.04,220,1005.6) 3651 1.855 1015

Once again, the plan 
with the tightest 
bound will yield a 
conservative decision.

The Weibull plan 
provides the tightest 
(least) upper bound 
and can be used in 
this case.

The Gamma plan 
provides the tightest 
(greatest) upper 
bound, but is very 
large.  Obviously, the 
ASA plan is preferable  
in this case.  

The UL plan provides an order-of-magnitude reduction in computing effort.



Test case 3—Near Exponential LL

• A typical application is lifetime data, where the random 
variable X represents the time at which a component fails 
and the condition is the lower limit L=Xmin.

• Note that Expo(), Gamma(1,), and Weibull(1,) are the 
same distribution.
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Plan comparisons
• The Exponential plan is very small—more than three orders of 

magnitude smaller than the attributes plan.  
• The Gamma and Weibull plans are identical and very large—almost three 

orders of magnitude larger than the attributes plan.
This remarkable difference in n flows from the fact that Exponential has a 
single parameter and fixed shape–if we know a prior the parent is 
exponential, then we need only estimate the mean.

• The Gamma and Weibull plans are the same, both derived from the 
same approximation.  These are more conservative than the exponential 
(the true value of A=270.37), but unusable in this application because of 
their size.

Variable n c k A

Binomial (ASA plan) 6580 12

Exponential(100000) 13 0.9806 1940.00

Gamma(1, 100000) 3819299 0.9979 2060.45

Weibull(1,100000) 3819299 0.9979 2060.45

Lower limit sampling plans (=0.02)
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Test case 3—modest skew
• 30 samples of 13 trials each were 

drawn from the parent Exponential 
distribution

• Gamma, Weibull, and Exponential 
distributions were fit to these 
datasets (shifts set to zero for 
lifetime data).

• Fits were compared using three 
alternative goodness-of-fit tests.  

• Best fits were dependent GOF test 
and there were  many ties for best 
fit.

• Acceptable fits to exponential (p-
value>0.15) where obtained in most 
cases (30 Chi-squared, 25 K-S, 23 A-
D).

• Exponential or binomial are the only 
practical plans in this case and 
acceptable Exponential fits most 
often can be achieved for 
Exponential parent distributions.
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Effect of skew

The Exponential plans are conservative for Wiebull parents with 
skew >2 and non-conservative for skew < 2.  Accepting the 
Exponential fit in the second case will result in a modesty lower 
reliability than specified (0.995 rather than 0.997 in this example).

But what about datasets from Weibull and Gamma 
parents masquerading as Exponential?
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Can modest skew be detected?

• 30 samples of 13 trials each were drawn from the parent 
Weibull distribution with skew=0.631

• Gamma, Weibull, and Exponential distributions were fit to 
these datasets (shifts set to zero for lifetime data).

• A-D and K-S tests typically showed very poor fits to 
Exponential even with these small samples (Chi-squared 
test appears to lack power).

• P-P and Q-Q plots illustrated that the Exponential fits 
were poorest in the region of interest .
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Conclusion: With a small sample and skew  2 it is not 
possible to discern the parent distribution; with lesser skew 
Weibull and Gamma will not be confused with Exponential.
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Procedure for 
determining 

a sampling 
plan



Procedure (lower limit plans)
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Procedure (upper limit plans)
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Summary
• ASA plans are preferred when computational demands can be met. 

These plans are exact and transparent.
• ASV plans are a viable alternative, when ASA plans are too large. 

These plans are inherently approximate; the data (perhaps 
transformed) must fit the a distribution for which ASA calculator is 
available.  The assistance of a statistician would be beneficial.

• For data with skew less than Exponential, the Normal, Gamma, or 
Weibull plan with the tightest bound is a good choice—it is 
conservative and can provide an order of magnitude reduction in 
computational effort.

• For near-Exponential data with a lower limit, the Exponential plan is 
not necessarily conservative (and should be applied intelligently and 
with caution)—but can provide several orders of magnitude reduction 
in computational effort.  

• In some applications, uncertainties in the protection afforded by 
Exponential may be inconsequential when model error is considered.

• When applying the Exponential, a good practice is to make as many 
trials as feasible and then attempt a fit to the distributions currently 
supported.
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Contributions
Variables acceptance can reduce sample sizes and the 
reduction can be as much as one, two, and even three orders of 
magnitude depending on the distribution and OC.  But this isn't 
always the case.  Gamma and Weibull plans become larger than 
attributes plans as the shape parameter decreases.  

Normal plans don't work well for inverse Gaussian.  But the 
published inverse Gaussian plans don't work either. We've 
found the error in the derivation and I think I may have a fix 
given the time to mess with it.  That's news.

The purpose of variables acceptance is to reduce sample size. 
But in accomplishing this we can't be sure that we satisfy the 
fundamental assumption that the distribution is known, at least 
for the OC we are interested in. Assuming we want to be 
conservative with respect to consumer's risk, we've developed 
a procedure to overcome this issue.  
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